Headlines News :
Home » » Earth’s Surface

Earth’s Surface

Earth’s Surface
Earth’s surface is the outermost layer of the planet. It includes the hydrosphere, the crust, and the biosphere. 

A Hydrosphere
The hydrosphere consists of the bodies of water that cover 71 percent of Earth’s surface. The largest of these are the oceans, which contain over 97 percent of all water on Earth. Glaciers and the polar ice caps contain just over 2 percent of Earth’s water in the form of solid ice. Only about 0.6 percent is under the surface as groundwater. Nevertheless, groundwater is 36 times more plentiful than water found in lakes, inland seas, rivers, and in the atmosphere as water vapor. Only 0.017 percent of all the water on Earth is found in lakes and rivers. And a mere 0.001 percent is found in the atmosphere as water vapor. Most of the water in glaciers, lakes, inland seas, rivers, and groundwater is fresh and can be used for drinking and agriculture. Dissolved salts compose about 3.5 percent of the water in the oceans, however, making it unsuitable for drinking or agriculture unless it is treated to remove the salts. 


B Crust
The crust consists of the continents, other land areas, and the basins, or floors, of the oceans. The dry land of Earth’s surface is called the continental crust. It is about 15 to 75 km (9 to 47 mi) thick. The oceanic crust is thinner than the continental crust. Its average thickness is 5 to 10 km (3 to 6 mi). The crust has a definite boundary called the Mohorovičić discontinuity, or simply the Moho. The boundary separates the crust from the underlying mantle, which is much thicker and is part of Earth’s interior. 


Oceanic crust and continental crust differ in the type of rocks they contain. There are three main types of rocks: igneous, sedimentary, and metamorphic. Igneous rocks form when molten rock, called magma, cools and solidifies. Sedimentary rocks are usually created by the breakdown of igneous rocks. They tend to form in layers as small particles of other rocks or as the mineralized remains of dead animals and plants that have fused together over time. The remains of dead animals and plants occasionally become mineralized in sedimentary rock and are recognizable as fossils. Metamorphic rocks form when sedimentary or igneous rocks are altered by heat and pressure deep underground. 


Oceanic crust consists of dark, dense igneous rocks, such as basalt and gabbro. Continental crust consists of lighter-colored, less dense igneous rocks, such as granite and diorite. Continental crust also includes metamorphic rocks and sedimentary rocks. 


C Biosphere
The biosphere includes all the areas of Earth capable of supporting life. The biosphere ranges from about 10 km (about 6 mi) into the atmosphere to the deepest ocean floor. For a long time, scientists believed that all life depended on energy from the Sun and consequently could only exist where sunlight penetrated. In the 1970s, however, scientists discovered various forms of life around hydrothermal vents on the floor of the Pacific Ocean where no sunlight penetrated. They learned that primitive bacteria formed the basis of this living community and that the bacteria derived their energy from a process called chemosynthesis that did not depend on sunlight. Some scientists believe that the biosphere may extend relatively deep into Earth’s crust. They have recovered what they believe are primitive bacteria from deeply drilled holes below the surface. 


D Changes to Earth’s Surface
Earth’s surface has been constantly changing ever since the planet formed. Most of these changes have been gradual, taking place over millions of years. Nevertheless, these gradual changes have resulted in radical modifications, involving the formation, erosion, and re-formation of mountain ranges, the movement of continents, the creation of huge supercontinents, and the breakup of supercontinents into smaller continents. 


The weathering and erosion that result from the water cycle are among the principal factors responsible for changes to Earth’s surface. Another principal factor is the movement of Earth’s continents and seafloors and the buildup of mountain ranges due to a phenomenon known as plate tectonics. Heat is the basis for all of these changes. Heat in Earth’s interior is believed to be responsible for continental movement, mountain building, and the creation of new seafloor in ocean basins. Heat from the Sun is responsible for the evaporation of ocean water and the resulting precipitation that causes weathering and erosion. In effect, heat in Earth’s interior helps build up Earth’s surface while heat from the Sun helps wear down the surface. 


D1 Weathering
Weathering is the breakdown of rock at and near the surface of Earth. Most rocks originally formed in a hot, high-pressure environment below the surface where there was little exposure to water. Once the rocks reached Earth’s surface, however, they were subjected to temperature changes and exposed to water. When rocks are subjected to these kinds of surface conditions, the minerals they contain tend to change. These changes constitute the process of weathering. There are two types of weathering: physical weathering and chemical weathering. 


Physical weathering involves a decrease in the size of rock material. Freezing and thawing of water in rock cavities, for example, splits rock into small pieces because water expands when it freezes. 


Chemical weathering involves a chemical change in the composition of rock. For example, feldspar, a common mineral in granite and other rocks, reacts with water to form clay minerals, resulting in a new substance with totally different properties than the parent feldspar. Chemical weathering is of significance to humans because it creates the clay minerals that are important components of soil, the basis of agriculture. Chemical weathering also causes the release of dissolved forms of sodium, calcium, potassium, magnesium, and other chemical elements into surface water and groundwater. These elements are carried by surface water and groundwater to the sea and are the sources of dissolved salts in the sea. 


D2 Erosion
Erosion is the process that removes loose and weathered rock and carries it to a new site. Water, wind, and glacial ice combined with the force of gravity can cause erosion. 


Erosion by running water is by far the most common process of erosion. It takes place over a longer period of time than other forms of erosion. When water from rain or melted snow moves downhill, it can carry loose rock or soil with it. Erosion by running water forms the familiar gullies and V-shaped valleys that cut into most landscapes. The force of the running water removes loose particles formed by weathering. In the process, gullies and valleys are lengthened, widened, and deepened. Often, water overflows the banks of the gullies or river channels, resulting in floods. Each new flood carries more material away to increase the size of the valley. Meanwhile, weathering loosens more and more material so the process continues. 


Erosion by glacial ice is less common, but it can cause the greatest landscape changes in the shortest amount of time. Glacial ice forms in a region where snow fails to melt in the spring and summer and instead builds up as ice. For major glaciers to form, this lack of snowmelt has to occur for a number of years in areas with high precipitation. As ice accumulates and thickens, it flows as a solid mass. As it flows, it has a tremendous capacity to erode soil and even solid rock. Ice is a major factor in shaping some landscapes, especially mountainous regions. Glacial ice provides much of the spectacular scenery in these regions. Features such as horns (sharp mountain peaks), arêtes (sharp ridges), glacially formed lakes, and U-shaped valleys are all the result of glacial erosion. 


Wind is an important cause of erosion only in arid (dry) regions. Wind carries sand and dust, which can scour even solid rock. 

Many factors determine the rate and kind of erosion that occurs in a given area. The climate of an area determines the distribution, amount, and kind of precipitation that the area receives and thus the type and rate of weathering. An area with an arid climate erodes differently than an area with a humid climate. The elevation of an area also plays a role by determining the potential energy of running water. The higher the elevation the more energetically water will flow due to the force of gravity. The type of bedrock in an area (sandstone, granite, or shale) can determine the shapes of valleys and slopes, and the depth of streams.

A landscape’s geologic age—that is, how long current conditions of weathering and erosion have affected the area—determines its overall appearance. Relatively young landscapes tend to be more rugged and angular in appearance. Older landscapes tend to have more rounded slopes and hills. The oldest landscapes tend to be low-lying with broad, open river valleys and low, rounded hills. The overall effect of the wearing down of an area is to level the land; the tendency is toward the reduction of all land surfaces to sea level.

D3 Plate Tectonics
Opposing this tendency toward leveling is a force responsible for raising mountains and plateaus and for creating new landmasses. These changes to Earth’s surface occur in the outermost solid portion of Earth, known as the lithosphere. The lithosphere consists of the crust and another region known as the upper mantle and is approximately 65 to 100 km (40 to 60 mi) thick. Compared with the interior of the Earth, however, this region is relatively thin. The lithosphere is thinner in proportion to the whole Earth than the skin of an apple is to the whole apple. 

Scientists believe that the lithosphere is broken into a series of plates, or segments. According to the theory of plate tectonics, these plates move around on Earth’s surface over long periods of time. Tectonics comes from the Greek word, tektonikos, which means “builder.”

According to the theory, the lithosphere is divided into large and small plates. The largest plates include the Pacific plate, the North American plate, the Eurasian plate, the Antarctic plate, the Indo-Australian plate, and the African plate. Smaller plates include the Cocos plate, the Nazca plate, the Philippine plate, and the Caribbean plate. Plate sizes vary a great deal. The Cocos plate is 2,000 km (1,000 mi) wide, while the Pacific plate is nearly 14,000 km (nearly 9,000 mi) wide.

These plates move in three different ways in relation to each other. They pull apart or move away from each other, they collide or move against each other, or they slide past each other as they move sideways. The movement of these plates helps explain many geological events, such as earthquakes and volcanic eruptions as well as mountain building and the formation of the oceans and continents.

D3a When Plates Pull Apart

When the plates pull apart, two types of phenomena occur depending on whether the movement takes place in the oceans or on land. When plates pull apart on land, deep valleys known as rift valleys form. An example of a rift valley is the Great Rift Valley that extends from Syria in the Middle East to Mozambique in Africa. When plates pull apart in the oceans, long, sinuous chains of volcanic mountains called mid-ocean ridges form, and new seafloor is created at the site of these ridges. Rift valleys are also present along the crests of the mid-ocean ridges.

Most scientists believe that gravity and heat from the interior of the Earth cause the plates to move apart and to create new seafloor. According to this explanation, molten rock known as magma rises from Earth’s interior to form hot spots beneath the ocean floor. As two oceanic plates pull apart from each other in the middle of the oceans, a crack, or rupture, appears and forms the mid-ocean ridges. These ridges exist in all the world’s ocean basins and resemble the seams of a baseball. The molten rock rises through these cracks and creates new seafloor.

D3b When Plates Collide

When plates collide or push against each other, regions called convergent plate margins form. Along these margins, one plate is usually forced to dive below the other. As that plate dives, it triggers the melting of the surrounding lithosphere and a region just below it known as the asthenosphere. These pockets of molten crust rise behind the margin through the overlying plate, creating curved chains of volcanoes known as arcs. This process is called subduction.
If one plate consists of oceanic crust and the other consists of continental crust, the denser oceanic crust will dive below the continental crust. If both plates are oceanic crust, then either may be subducted. If both are continental crust, subduction can continue for a while but will eventually end because continental crust is not dense enough to be forced very far into the upper mantle.

The results of this subduction process are readily visible on a map showing that 80 percent of the world’s volcanoes rim the Pacific Ocean where plates are colliding against each other. The subduction zone created by the collision of two oceanic plates—the Pacific plate and the Philippine plate—can also create a trench. Such a trench resulted in the formation of the deepest point on Earth, the Mariana Trench, which is estimated to be 11,033 m (36,198 ft) below sea level.

On the other hand, when two continental plates collide, mountain building occurs. The collision of the Indo-Australian plate with the Eurasian plate has produced the Himalayan Mountains. This collision resulted in the highest point of Earth, Mount Everest, which is 8,850 m (29,035 ft) above sea level.

D3c When Plates Slide Past Each Other

Finally, some of Earth’s plates neither collide nor pull apart but instead slide past each other. These regions are called transform margins. Few volcanoes occur in these areas because neither plate is forced down into Earth’s interior and little melting occurs. Earthquakes, however, are abundant as the two rigid plates slide past each other. The San Andreas Fault in California is a well-known example of a transform margin.
The movement of plates occurs at a slow pace, at an average rate of only 2.5 cm (1 in) per year. But over millions of years this gradual movement results in radical changes. Current plate movement is making the Pacific Ocean and Mediterranean Sea smaller, the Atlantic Ocean larger, and the Himalayan Mountains higher.
Share this post :

Post a Comment

 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. Info All Search - All Rights Reserved
Template Created by Creating Website Published by Mas Template
Proudly powered by Blogger